Expression of iron-acquisition-related genes in iron-deficient rice is co-ordinately induced by partially conserved iron-deficiency-responsive elements.

نویسندگان

  • Takanori Kobayashi
  • Motofumi Suzuki
  • Haruhiko Inoue
  • Reiko Nakanishi Itai
  • Michiko Takahashi
  • Hiromi Nakanishi
  • Satoshi Mori
  • Naoko K Nishizawa
چکیده

Rice plants (Oryza sativa L.) utilize the iron chelators known as mugineic acid family phytosiderophores (MAs) to acquire iron from the rhizosphere. Synthesis of MAs and uptake of MA-chelated iron are strongly induced under conditions of iron deficiency. Microarray analysis was used to characterize the expression profile of rice in response to iron deficiency at the genomic level. mRNA extracted from iron-deficient or iron-sufficient rice roots or leaves was hybridized to a rice array containing 8987 cDNA clones. An induction ratio of greater than 2.0 in roots was observed for 57 genes, many of which are involved in iron-uptake mechanisms, including every identified or predicted step in the methionine cycle and the biosynthesis of MAs from methionine. Northern analysis confirmed that the expression of genes encoding every step in the methionine cycle is thoroughly induced by iron deficiency in roots, and almost thoroughly induced in leaves. A promoter search revealed that the iron-deficiency-induced genes related to iron uptake possessed sequences homologous to the iron-deficiency-responsive cis-acting elements IDE1 and IDE2 in their promoter regions, at a higher rate than that showing no induction under Fe deficiency. These results suggest that rice genes involved in iron acquisition are co-ordinately regulated by conserved mechanisms in response to iron deficiency, in which IDE-mediated regulation plays a significant role.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A receptor-like protein RMC is involved in regulation of iron acquisition in rice

Iron (Fe) is one of the essential mineral elements for plant growth and development. Acquisition of Fe by plants is mediated by a complex network involving Fe mobilization, uptake by root cells, and transport within plants. Here, we evaluated the role of a previously clarified gene encoding a receptor-like protein from rice, OsRMC, in the regulation of Fe acquisition by comparing Fe concentrati...

متن کامل

The spatial expression and regulation of transcription factors IDEF1 and IDEF2.

BACKGROUND AND AIMS Under conditions of low iron availability, rice plants induce genes involved in iron uptake and utilization. The iron deficiency-responsive cis-acting element binding factors 1 and 2 (IDEF1 and IDEF2) regulate transcriptional response to iron deficiency in rice roots. Clarification of the functions of IDEF1 and IDEF2 could uncover the gene regulation mechanism. METHODS Spa...

متن کامل

Rice Enrichment by Genetic Engineering for Combating Iron and Zinc Deficiency

Iron deficiency anemia and zinc deficiency are among the most recognized forms of micronutrient malnutrition and about two billion of people around the world suffer from it.  Monotonous diets based on staple cereals are in fact a poor source of iron and zinc. Rice is a staple food for more than half of the world's population. Various methods have been proposed for food enrichment, but many of t...

متن کامل

Cross-species comparison of genomewide gene expression profiles reveals induction of hypoxia-inducible factor-responsive genes in iron-deprived intestinal epithelial cells.

Molecular mechanisms mediating the induction of metal ion homeostasis-related genes in the mammalian intestine during iron deficiency remain unknown. To elucidate relevant regulatory pathways, genomewide gene expression profiles were determined in fully differentiated human intestinal epithelial (Caco-2) cells. Cells were deprived of iron (or not) for 6 or 18 h, and Gene Chip analyses were subs...

متن کامل

Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants.

To clarify the molecular mechanism that regulates iron (Fe) acquisition in graminaceous plants, a time-course analysis of gene expression during Fe deficiency stress was conducted using a rice 22K oligo-DNA microarray. Twenty-one genes for proteins that function in gene regulation were induced by Fe deficiency. Of these genes, a putative basic helix-loop-helix (bHLH) transcription factor gene, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 56 415  شماره 

صفحات  -

تاریخ انتشار 2005